Variance Reduction Techniques for Estimating Value-at-Risk

نویسندگان

  • Paul Glasserman
  • Perwez Shahabuddin
چکیده

T paper describes, analyzes and evaluates an algorithm for estimating portfolio loss probabilities using Monte Carlo simulation. Obtaining accurate estimates of such loss probabilities is essential to calculating value-at-risk, which is a quantile of the loss distribution. The method employs a quadratic (’’delta-gamma’’) approximation to the change in portfolio value to guide the selection of effective variance reduction techniques; specifically importance sampling and stratified sampling. If the approximation is exact, then the importance sampling is shown to be asymptotically optimal. Numerical results indicate that an appropriate combination of importance sampling and stratified sampling can result in large variance reductions when estimating the probability of large portfolio losses. (Value-At-Risk;Monte Carlo; Simulation; Variance Reduction Technique; Importance Sampling; Stratified Sampling; Rare event)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 Importance Sampling and Stratification for Value - at - Risk

This paper proposes and evaluates variance reduction techniques for efficient estimation of portfolio loss probabilities using Monte Carlo simulation. Precise estimation of loss probabilities is essential to calculating value-at-risk, which is simply a percentile of the loss distribution. The methods we develop build on delta-gamma approximations to changes in portfolio value. The simplest way ...

متن کامل

Variance Reduction Techniques for Estimating Value - at - RiskPaul

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sp...

متن کامل

Variance - Reduction Techniques for Estimating Quantiles and Value - at - Risk

VARIANCE-REDUCTION TECHNIQUES FOR ESTIMATING QUANTILES AND VALUE-AT-RISK by Fang Chu Quantiles, as a performance measure, arise in many practical contexts. In finance, quantiles are called values-at-risk (VARs), and they are widely used in the financial industry to measure portfolio risk. When the cumulative distribution function is unknown, the quantile can not be computed exactly and must be ...

متن کامل

Importance Sampling and Strati cation for Value - at - Risk

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and sp...

متن کامل

Hedging and Value at Risk: A Semi-Parametric Approach

The non-normality of financial asset returns has important implications for hedging. In particular, in contrast with the unambiguous effect that minimum-variance hedging has on the standard deviation, it can actually increase the negative skewness and kurtosis of hedge portfolio returns. Thus the reduction in Value at Risk (VaR) and Conditional Value at Risk (CVaR) that minimum-variance hedging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000